笔记本最多降温达十几度(4)

 
笔记本最多降温达十几度(4)
2016-09-23 15:11:54 /故事大全

●打造极寒温度 DIY笔记本硬件(下)

第二招:硅脂角度散热改造

玩DIY的朋友,应该对于白色的导热硅脂很熟悉。我们通常所说的导热硅脂,应该被称为硅膏,成分为硅油+填料。

硅油,又称二甲基硅油,无味无毒,具有生理惰性、良好的化学稳定性、电缘性和耐候性,粘度范围广,凝固点低,闪点高,疏水性能好,并具有很高的抗剪能力,可在50~180oC温度内长期使用,广泛用做绝缘、润滑、防震、防尘油、介电液和热载体,有及用作消泡、脱膜、油漆和日用化妆品的添加剂等。

填料为磨得很细的粉末,成份为ZnO/Al2O3/氮化硼/碳化硅/铝粉等。硅油保证了一定的流动性,而填料填充了CPU和散热器之间的微小空隙。

【点击图片进入下一页或下一篇】

普通硅脂

这样的导热硅脂,价格便宜,稳定性好,广泛用于我们的笔记本电脑里。这样的硅脂,笔者把他称为液态硅脂,因为它是呈流体状的。

【点击图片进入下一页或下一篇】

液态硅脂,还有一些添加银粉和其他添加剂制程的高端硅脂,例如信越7783,就含有纳米级的银粉,导热率从普通硅脂的0.5-2w/mk提升到了7w/mk,实际导热效果从后面的测试来看,确实很明显。

高温的笔记本里,经常会发现,显卡芯片上方有一块比较厚的固态硅脂,这不同于之前的液态硅脂,它的导热能力更差。

它唯一的存在理由,就是能够降低成本,因为它能够让一根热管照顾两个芯片。另外,不易压碎芯片的缓冲特性,很适应笔记本电脑的批量生产组装。因此,单热管的双核+独显笔记本,往往都有固态硅脂这样不利于我们散热的东西存在。

【点击图片进入下一页或下一篇】

固态硅脂

固态硅脂的导热率和普通的液态硅脂差不多,但是由于厚度往往在毫米级别,远远大于接触面之间的缝隙,所以热阻比液态硅脂要大10倍以上,导热效果就可想而知了,在后面的测试中,也验证了这一点。

【点击图片进入下一页或下一篇】

固态硅脂类导热介质,笔者还找到了3M导热垫,常常用于给显存贴金鱼片用。如果用于CPU导热,效果怎么样,笔者也很感兴趣。所以后面也附加了3M导热垫的测试。

为了填充芯片和铜接触面的缝隙,除了使用廉价的液态硅脂,或者固态硅脂外,DIY发烧友们,早就开始使用液态金属了。

【点击图片进入下一页或下一篇】

设想一下,以上缝隙,如果用焊锡焊死,是否导热率的瓶颈就不存在了呢,但是焊锡的熔点在200-300℃,用来导热工艺上很难实现。或者,用一种导热率高于焊锡,熔点大大低于焊锡的金属来填充。汞的流体性太强,并且有毒,所以不能用于导热。于是液态金属就诞生了。

【点击图片进入下一页或下一篇】

酷冷博液态金属

作为导热用途的液态金属,这里特指酷冷博的液态金属导热垫这款产品。液态金属导热垫,具有良好的浸润性,能够与现在市面上所有材质的散热器配合使用,如铝、铜散热器。官方称仅含有金属,无任何有害的化学添加剂。其熔点为59℃,沸点高于1350℃,不溶于水和有机溶剂,不易燃。

酷冷搏液态金属导热垫是铟、铋和铜三种金属的合金,其中铋的作用主要是降低熔点,铟的作用主要是让合金具有较强的延展性(能压成薄薄的金属片),另外也可以降低合金的熔点,而铜的作用主要是加强合金的导热能力。

铟(Indium)金属显银白,光泽亮丽,熔点低(156.6℃),沸点高(2080℃),传导性好,延展性好,可塑性强,可压成极薄的金属片。合金中每加1%铟,可降低熔点1.45℃,是制造低熔点合金的良兵利器。

铋(Bismuthum)的熔点低(271℃),很早就被用来制作易熔合金(熔点在45-100℃),含铋的易熔合金被广泛应用于防火、防电设备以及一些蒸汽锅炉的安全塞上,一旦发生火灾时,一些水管的活塞会“自动”熔化,喷出水来。

但是铋的导热性比较差,在金属中排倒数第二(仅强于汞),因此酷冷搏液态金属导热垫中加入了导热能力出众的铜(Copper),以强化导热垫的传热能力。

下面,笔者就对液态金属的低熔点,进行一下实验,顺便看看它和铜的浸润性如何。

【点击图片进入下一页或下一篇】

热风枪输出80摄氏度的热风

液态金属这个温度下,马上就熔化了。

【点击图片进入下一页或下一篇】

液态金属熔化了

在液态金属熔化后,笔者用镊子拨它,发现此时的液态金属,因为铜的保温关系,仍然呈现液态,但是很稠,几乎不具有流动性,说明了它用于散热时是很安全的。

【点击图片进入下一页或下一篇】

背面状况

抠下这片液态金属,可以发现它的背面,完全融化后已经渗入了铜片表面的缝隙中,纹理清晰可见,说明了它对铜的浸润性是很好的。接触面之间的缝隙,再也不用担心了。

下面,笔者对各种硅脂(包括液态金属、固态硅脂),在笔记本上进行替换测试。首先进行倍能事达白色硅脂的测试。

【点击图片进入下一页或下一篇】

测试硅脂

测试用的笔记本是笔者的SONY SZ26,它的CPU散热器,很方便拆装,CPU和铜吸热面,是直接接触的,可以很好的体现硅脂的性能。另外,T2500的CPU,也是个发热大户,可以拉开测试数据的差距。

【点击图片进入下一页或下一篇】

SONY SZ系列的散热器非常好拆装

测试软件,笔者选用了现今普及率非常广的鲁大师,温度曲线可以非常清楚的表现温度的变化。因为刚开机时,散热器本身就很冷,所以CPU温度普遍偏低,所以待机温度,笔者选择在极限温度测试后,以回归温度为准。

最后以极限温度、回归温度,为两个测试数据,来对比各类硅脂在笔记本电脑里表现出来的性能。

液态硅脂,这里测试两种:倍能事达白色硅脂和信越7783含银硅脂。

卸下散热器,用卫生纸清理干净铜吸热面和芯片表面。再涂上硅脂,上紧螺丝,并且统一把后盖安装回去。

【点击图片进入下一页或下一篇】

涂好硅脂

之后,开机允许鲁大师的“温度测试”项目。在15分钟后,截图,保存数据。白色硅脂的温度曲线如下:

【点击图片进入下一页或下一篇】

最高88度

关闭测试窗口,不运行任何程序,等待笔记本自然降温。15分钟后,取得回归温度:

【点击图片进入下一页或下一篇】

最低48度

这个成绩,就是笔记本原厂的水平,最低温度为48度,完全符合所谓的出厂要求,但是最高温度88度,虽然不会损坏CPU,但高温会加剧芯片的老化,让人很不满意。

再替换上信越7783,注意涂匀了。

【点击图片进入下一页或下一篇】

测试成绩如下:

【点击图片进入下一页或下一篇】

最高温度79度

【点击图片进入下一页或下一篇】

最低温度45度

不愧是信越7783,作为中端含银硅脂,可以让最高温度下降9度,最低温度也下降了3度,它的性能具有指导意义。

下面我们来测试一下固态硅脂和3M的导热垫的导热性能。在HP的老笔记本里,笔者取得了一片固态硅脂作为测试用品。3M的导热垫笔者是从淘宝上10元购得。

【点击图片进入下一页或下一篇】

固态硅脂

由于固态硅脂具有很强的弹性,所以不必担心接触不良的问题。安装比较简单,测试数据如下:

【点击图片进入下一页或下一篇】

最高温度100度,CPU自动降频了

【点击图片进入下一页或下一篇】

最低温度52度

固态硅脂的导热性能不出笔者所料,在CPU满负载的情况下,温度直奔100度,要不是CPU自动降频,这个上限还不知道是多少。最低温度52度,可以看出,在CPU空负载的情况下,还是具有导热作用的。这样的东西,不知道用在多少台笔记本上,给显卡芯片导热,真是悲剧。下面是3M的导热垫:

【点击图片进入下一页或下一篇】

3M的导热垫的性能,大大出乎笔者的预料,看样子这类产品,只能给显存、北桥等发热不大的芯片来导热了。测试数据如下:

【点击图片进入下一页或下一篇】

最高温度100度

【点击图片进入下一页或下一篇】

最低60度

这样糟糕的成绩,我只能以“比空气导热要好”来形容了。看来只要是固态硅脂,不管什么货,都不要委以重任,给显存贴贴还差不多!

终于到了最压轴的最终环节了,最贵的液态金属登场了。这次实验用的液态金属,是笔者用130元,从淘宝上购得。

【点击图片进入下一页或下一篇】

剪一片液态金属压住CPU

由于CPU核心面积比一整张液态金属小多了,所以本着节约的精神,按照CPU核心的面积,剪一小片就足够了。测试数据如下:

【点击图片进入下一页或下一篇】

最高温度71度

【点击图片进入下一页或下一篇】

最低温度45度

测试的成绩,实在是太好了。笔者实在好奇,此时的液态金属是一个什么状况,于是把散热器又拆开了。让大家也满足一下眼瘾。

【点击图片进入下一页或下一篇】
【点击图片进入下一页或下一篇】

液态金属

看起来,液态金属在使用中,已经完全熔化了,接触面之间的微小空隙已经完全被填充了。70W/mk的导热率,可以最大化的发挥出来了。

按照笔者的经验,笔记本的原厂散热,几乎都是有改进余地的。下面给出本次测试的成绩:

【点击图片进入下一页或下一篇】

用液态金属替换硅脂,毫无疑问已经达到了完美的效果,但是也是最贵的方案。液态硅脂里,含银的信越7783,也不错,18块钱,性价比高。

所属专题:
如果您觉得本文或图片不错,请把它分享给您的朋友吧!

 
故事大全
 
版权所有- © 2012-2025 · 故事大全 SITEMAP站点地图-Foton Auman手机看故事 站点地图-Foton Auman